前言

版权声明

版权所有,此说明中涉及文件、图纸、数据等内容属深圳市卓信创驰技术有限公司所有。未 经事先书面

批准不得擅自复制或修改。本手册以提供正确、可靠的信息为出发点,但是卓信创驰对于本手册的使用结果,或者因使用本手册而导致其它第三方的权益受损,概不负责。

所有规格和应用程序如有更改, 恕不另行通知。

安全提示

- 1) 请仔细阅读此安全操作说明;
- 2) 请妥善保存此用户手册供日后参考;
- 3) 用湿抹布清洗设备前,请从插座拔下电源线。请不要用液体或去污喷雾剂清洗设备;
- 4) 对于使用电源线的设备,设备周围必须有容易接触到的电源插座;
- 5) 请不要在潮湿环境中使用设备;
- 6) 请在安装前确保设备放置在可靠的平面上,意外跌落可能会导致设备损坏;
- 7) 设备外壳是用于空气对流散热,从而防止设备过热,请不要覆盖任何物体;
- 8) 当您连接设备到电源插座上前,请确认电源插座的电压是否符合要求;
- 9) 请将电源线布置在人们不易绊到的位置,并不要在电源线上覆盖任何杂物;
- 10) 请注意设备上的所有警告标识;
- 11) 如果长时间不使用设备,请将其同电源插座断开,避免设备被超标的电压波动损坏;
- 12) 请不要让任何液体流入电源口或外部接口,以免引起火灾或者短路;
- 13) 请不要自行打开设备。为了确保您的安全,请由经过认证的工程师来打开设备;
- 14) 如遇下列情况,请由专业人员来维修:

■电源线或者插头损坏;

- ■设备内部有液体流入;
- ■设备曾暴露在过于潮湿的环境中使用;
- ■设备无法正常工作,或您无法通过用户手册来使其正常工作;
- ■设备跌落或者损坏;

■设备有明显的外观破损。

15) 请不要把设备放置在超出建议的温度范围的环境,否则可能会损坏设备;

JOEOREXUIUE 机

来

未

器

X

- 16) 计算机配置了由电池供电的实时时钟电路,如果电池更换不正确,将有爆炸的危险。 因此,只可以使用制造商推荐的同一种或者同等型号的电池进行替换,请按照制造 商的指示处理旧电池:
- 17) 注意:任何未经验证的部件都可能对设备造成意外损坏。为保证安装正确,请只使 用附件盒内提供的部件,如螺丝:
- 18) 注意:无论何时进行硬件操作,请务必完全断开机箱电源。不可在电源接通时进行 设备连接,以避免瞬间电涌损坏敏感电子元件。

警告与注意

在操作过程中,用户须特别注意该手册中的警告信息,以免造成人身伤害。

该手册中的注意信息可帮助用户避免损坏硬件或丢失数据,例如:如果电池更换不正确,将 有爆炸的危险。因此,只可以使用制造商推荐的同一种或者同等型号的电池进行替换。请按 照制造商的提示处理旧电池。

安全措施

按照下面这些简单的预防措施,以保护自己和产品免受伤害和损害。

■为避免触电,请在关闭电源后对产品进行操作,断电前请勿接触主板及任何部件;

■更换任何配置前必须断开电源,不然在链接跳线或者安装其它部件的时候因为功率过大会 损坏敏感元器件。

目录

第一章	概述	5
	1.1 简介	5
	1.2 规格说明	6
	1.3 外观尺寸	(0
	1.4 指小灯 阮明	0
第二章	连接接口说明	9
	2.1 接口说明	9
	2.1.1 电源开关	10
	2.1.2 电源输入接口	10
	2.1.3 DisplayPort	10
	2.1.4 HDMI 接口	11
	2.1.5 USB 接口	11
	2.1.6 以太网接口(LAN)	11
	2.1.(盲频按口	12
	2.1.8 中行週后按口(COM)	12
	2.1.9 IF 卜按曰	13 12
	2.1.10 gg 1/0	13 17
	2.1.11 Ofean OMOS	15
	2.1.13 内置远程开关接口(CONN_EXT_BTN)	15
笛二音	使用揭佐说明	6
匊 二早	饮用採住奶奶	.0
	3.1 开箱检查	16
	3.2 工作环境	16
	3.3 准备工作	16
	3.4 安装步骤	17
	3.4.1 硬件连接	17
	3.4.2 安装软件	17
	3.5 软件资源	18
	3.5.1 DEMO 间介	18
	3.5.2 DEMU 使用	19
	5.0 / 编 任	21 91
	3.6.1 JJ /	21 92
	3.6.2 DU 切肥	20 97
مرد 1111 مر م		
第四草	BIOS 改置说明 3	31
	4.1 BIOS 说明	31

FUFUREROBOF 未来机器人

4.1.1 进入 CMOS Setup 设置	31
4.1.2 功能键及辅助说明	32
4.2 主菜单功能	33
4.3 Main(标准 CMOS 功能设定)	34
4.4 Advanced(高级 BIOS 功能设定)	35
4.5 Chipset(芯片组性能设置)	36
4.6 Security (设定管理员/用户密码)	37
4.7 Boot (引导设置)	38
4.8 Save&Exit (保存&退出选项)	39

第一章 概述

1.1 简介

E330 系列模块化无风扇嵌入式计算机,采用 Intel Apollo Lake SoC + FPGA 平台,提 供可靠的 I/O 设计,满足最大数量的连接。采用业界一流工艺的全铝合金外壳,非常适合工 业自动化以及严苛环境中可靠运行的应用。

E330系列具有专业的工业控制 I/0 接口,包括两个独立的 intel 以太网端口、两个 USB3.0 和两个 USB2.0 端口、四组隔离数字 I/0、二个 RS232 和二个 RS485 端口,可实现实时动态触 发和多摄像头同步采集;产品经过加固级结构设计,非常适合工业自动化以及严苛环境中可 靠运行的应用。

E330系列是一款高集成、高性能、超紧凑的无风扇嵌入式计算机,适用于智能交通,设施管理,工业自动化和物联网(IoT)等应用领域。

1.2 规格说明

型号	E330 系列				
处理器系统	Intel Apollo Lake SoC + FPGA 处理器				
内存	板载 4GB DDR3L ,最大 8GB				
	1x DP,最大分辨率可达 4096 x 2160 @ 60Hz				
显示	1x HDMI,最大分辨率可达 3840 x 2160 @ 30Hz				
	HDMI+DP 独立显示				
音频	Realtek ALC662,高清晰度音频,线路输出&线路输入				
ाज ्र स ार	1x RTL8111H GbE,支持网络唤醒				
U MM	2x Intel i210 GbE,支持网络唤醒				
串口	2 x RS232,2 x RS485				
USB 接口	2 x USB3.0,2 x USB2.0				
数字 I0	4 路隔离数字 DI、4 路隔离数字 D0				
M.2 存储	1 x M.2 2242 SSD				
eMMC	8GB 最大支持 256GB				
TF卡	1x TF 卡槽				
电源	24V DC-IN 3PIN Phonix				
操作系统	Windows 10 64 位				
结构	铝合金				
安装方式	壁挂套件(可选)安装				
尺寸	120 x 101 x 51mm (长 x 宽 x 高)				
重量	0.65kg				
工作温度	-20°C~60°C带 0.7m/s 气流				
存储温度	-40° C~80° C				
相对温度	95% @ 40(非凝结)				
ESD	接触放电+/-4 KV,空气放电+/-8 KV				
EMC	CE/FCC Class B				

表 1-1: 规格说明

1.3 外观尺寸

E330系列计算机的主要外观尺寸如图 1-1、1-2 所示,所有尺寸单位为 mm。

图 1-1: 俯视图

图 1-2: 侧视图

图 1-3: 侧视图

1.4 指示灯说明

图标	颜色	状态指示	描述
۲	蓝	电源开关	DC 电源关:灭 DC 电源开:亮
0	绿	SSD 硬盘检测	有:亮 工作:闪烁 无:灭
4	绿	待机指示灯	待机:闪烁 工作:灭

表 1-2: 指示灯状态说明

第二章 连接接口说明

2.1 接口说明

E330系列计算机接口如图 2-1、图 2-2 所示。

图 2-2: 后面板接口布局图

2.1.1 电源开关

E330 系列计算机带有 1 个电源开关按钮,前面板的 LED 指示灯可指示开机与关机的状态,开机状态(蓝色 LED)和关闭状态(LED 灯熄灭),接口如图 2-3 所示。

图 2-3: 电源开关机键

2.1.2 电源输入接口

E330系列带有一个 24V 3PIN 凤凰端子,接口如图 2-4 所示。

2.1.3 DisplayPort

E330系列带有一个DisplayPort高清显示接口,接口如图 2-5 所示。

图 2-5: DP 接口示意图

2.1.4 HDMI 接口

E330系列带有一个 HDMI 高清显示接口, 接口如图 2-6 所示。

图 2-6: HDMI 接口示意图

2.1.5 USB 接口

E330 系列带有一个 2 个 USB2.0 接口和 2 个 USB3.0 接口, USB 接口支持即插即用功能, 允许用户随时连接或断开设备, 而不必关闭计算机, 接口如图 2-7 所示。

2.1.6 以太网接口(LAN)

E330系列带有3个以太网接口,以太网端口采用标准的RJ-45插孔,接口带有LED指示灯,可指示传输/连接状态,接口如图2-8所示。

图 2-8: 以太网接口示意图

2.1.7 音频接口

E330 系列带有 2 个 3.5 立体声音频接口,支持线路输出和线路输入。音频芯片控制器为 ALC662,接口如图 2-9 所示,信号描述如表 2-1 所示。

\bigcirc	\bigcirc
Ŷ	\mathbf{O}

图 2	-9: 音频接口示意图
图标	描述
\mathbf{O}	Line-out
Ŷ	Mic-in

表 2-1: 信号描述说明

2.1.8 串行通信接口(COM)

E330 系列板载一个 9PIN RS232 插针、二个 3PIN RS485 和二个 3PIN RS232 接口,接口 如图 2-10 所示,信号如表 2-2 所示。提示:识别插针接口的第1 针脚,观察插头插座旁边会 用三角符号表示。

3	2	1	

图 2-10: 串行通信接口示意图

针脚	RS232(3PIN 端子)	RS485(3PIN 端子)	RS232(板载插针)
1	RXD	DATA-	DCD
2	TXD	DATA+	DSR
3	GND	GND	RXD
4	/	/	RTS
5	/	/	TXD
6	/	/	CTS
7	/	/	DTR
8	/	/	RI
9	/	/	GND

表 2-2: 串口针脚定义

注: /表示"无连接"

2.1.9 TF 卡接口

E330系列带有1个TF卡槽接口,最大支持256GB存储卡,接口如图2-11所示。

2.1.10 数字 I/0

E330系列带有4组数字 I/0,用来实现数据采集的触发、控制及计数等功能。接口如图 2-12 所示。

图 2-12: 数字 I/0 接口及电路示意图

针脚	DI	DO	
1	0+	0+	
2	0-	0-	
3	1+	1+	
4	1-	1-	
5	2+	2+	
6	2-	2-	
7	3+	3+	
8	3-	3-	

表 2-3: 数字 I/0 针脚定义

2.1.11 Clear CMOS

E330 系列带有1个Clear CMOS键,图标如图 2-13 所示。

CMOS 由主板上钮扣电池供电,清除 CMOS 会导致永久性消除以前的系统设置并将其设为 原始(出厂设置)系统设置。其步骤如下:

FULLYEROBOL

机

器

人

来

未

- (1) 关闭计算机,断开电源;
- (2) 使用细长的针脚按 Clear CMOS 键 3-5 秒, 然后松开;
- (3) 启动计算机,启动时按键进入BIOS设置,重载最优缺省值;
- (4) 保存并退出设置。

ତ

图 2-13: Clear CMOS 键示意图

请不要在计算机带电时清除 CMOS, 以免损坏设备!

2.1.12 内置 5V/12V 电源接口(5VCONN/12VCONN)

E330 系列主板自带有一个 2PIN 5V 和 12V 接口,用户可以根据需求来给外设供电。接口 如图 2-14 所示,信号如表 2-4 所示。提示:识别插针接口的第1 针脚,观察插头插座旁边会 用三角符号表示。

图 2-14: 5V/12V 接口示意图

针脚	5V	12V			
1 5V+		12V+			
2	GND	GND			

表 2-4: 电源针脚定义

2.1.13 内置远程开关接口(CONN_EXT_BTN)

E330系列主板自带有一个 4PIN 远程开关接口,用户可以根据需求来选择相应的信号。 接口如图 2-15 所示,信号如表 2-5 所示。提示:识别插针接口的第1 针脚,观察插头插座旁 边会用三角符号表示。

图 2-15: 远程开关接口示意图

针脚	远程开关		
1	PWR		
2	GND		
3	GND		
4	3.3V+		
1			

表 2-5: 远程开关针脚定义

第三章 使用操作说明

3.1 开箱检查

打开包装前,请先查看外包装标明的产品型号是否与订购的产品一致。打开包装后,请 首先检查计算机的表面是否有机械损坏,然后按照装箱清单或订购合同仔细核对配件是否齐 备。如果计算机表面有损坏,或产品内容不符合,请不要使用,立即与经销商联系。

为了防止静电损害计算机,请在接触计算机电路之前触摸有效接地 金属物体以释放身体所携带的静电荷,并带上防静电手套。

3.2 工作环境

计算机需要远离大功率、强电磁干扰的商用电器和环境。

3.3 准备工作

在安装之前,请先准备好以下物品:

- 1) E330 系列计算机一套
- 2) DisplayPort 或 HDMI 显示器
- 3) 连接线缆
- 4) 键盘、鼠标
- 5) 电源一套

3.4 安装步骤

3.4.1 硬件连接

连接图如图 3-1 所示

- 1) 准备好计算机、显示器;
- 2) 将计算机电源线接好, USB 口接好键盘鼠标;
- 3) 将计算机用网口线缆接到网络接口上;
- 4) 将计算机用 DP 或 HDMI 线连接到显示器上;
- 5) 接通电源,开机。

图 3-1: E330 计算机连接图

3.4.2 安装软件

- 步骤一:打开电源,给计算机供电;
- 步骤二:给计算机安装好合适的操作系统;
- 步骤三:给计算机安装好合适的驱动程序。

3.5 软件资源

3.5.1 DEMO 简介

提供 C++语言函数库和 Windows 下的动态链接库。用户只要调用函数库中的指令,就可以 实现各种功能。

JOEOREXJIJE

机

器

人

未

来

为了降低使用难度,我们提供简单的 DEMO 程序供客户进行使用,对模块进行调试。用户 需要安装一个驱动程序,就可以简单地操作。

程序安装完成后,打开 DEMO 软件,其主界面如图 3-2 所示:

🔱 ExioDemo							– 🗆 X
Configure				ChangeDi	0		
~	Search	Open	Close	ch1-8	V ENC_PULSE	Update	TEST_DIO TEST_LED
District Transfer							
Digital Input			1				Kenesn
Input_Mode	Level	Level	Level ~	Level V	Level V	evel ~ Level	✓ Level ✓
Inverse_Input	Normal	Vormal V	Normal ~	Normal ~	Normal ~ N	ormal ~ Norma	il v Normal v
debounce_delay	0	0	0	0	0 0	0	0 (us)
edge_count							
Input_Status	1CH	2CH	🗌 ЗСН	4CH	5CH]6СН 🗌 7СН	всн
IntEnable	1INT	2INT	□ 3INT	4INT	5INT]6INT □7IN	T 🗌 8INT
Digital Output							
Output	L 1CH	2CH	🗌 ЗСН	□4CH [5СН	6СН 7СН	BCH
Output_Mode	Level ~	Level ~	Level ~	Level ~	Level 🗸 Le	evel ~ Level	✓ Level ✓
Inverse_Output	Normal ~	Normal ~	Normal ~	Normal ~	Normal 🗸 No	ormal 🗸 Norma	I 🗸 Normal 🗸
Output_Delay							(us)
Pulse_Width							(us)
Pulse_Cycle							(us)
Pulse_Number							
Input_Source	1 ~	1 ~	1 ~	1 ~	1 ~ 1	~ 1	✓ 1 ✓
Light Control Enable	□ 1CH	□ 2CH		ЗСН	4сн	🗆 5СН	🗌 6СН
Tripper Made	SoftControl	Coff Co	otrol S	SoftControl		SoftControl	SoftControl V
Trigger_Mode	1				1	1	1
Freq/Time	1			·	-	_	
Lum(%)		0%	0%	0%		0%	0%
Trigger_Source	Di_1	∨ Di_1	~ D	L1 ~	Di_1 ~	Di_1	✓ Di_1

图 3-2 DEMO 主界面图

DEMO 软件主要有以下功能模块:

1) 配置栏: 主要是打开设备和关闭设备的功能;

2) 输入模块:提供电平输入(输入状态可取反)、边沿触发、滤波消抖时间,同时提供上升沿计数的功能;

3) 输出模块:提供电平输出(输出状态可取反)、脉冲输出、输入触发输出脉冲的功能, 可设置任意输入通道的上升沿或下降沿触发;输出可以设置延时时间,设置输出脉冲的宽度;

4) 光源输出和触发模块为 V 系列专用, E 系统不具备此功能。

3.5.2 DEMO 使用

步骤一:安装驱动;

1、 打开文件夹里面的程序安装文件, 双击打开安装;

2、 安装完成后,在电脑的"设备管理器"中,可看到控制卡的驱动,如图 3-3 所示:

· 设备管理器	
文件(F) 操作(A) 查看(V) 帮助(H)	
(* *) 🖬 📓 🖬 🛝 😭 🔥 🚯	
▲ 🏯 huangxiaofeng ▶ 😋 IDE ATA/ATAPI 按制器	
▲ Y IO Devices ▲ Y IC I/O card	
▷ 愛 Jungo ▷ 🔲 处理器	
 ○ ○ ○ 	
▷ · · · · · · · · · · · · · · · · · · ·	
▷ 量 単化語 ▷	
□ → → 一 声音、 光频和 御政 注制器 > → // 脱频和 御政 注制器	
 → 適用車行总线控制器 → 配像设备 	
> 22 网络运用器	

图 3-3 驱动安装成功界面

至此,驱动和程序已经安装完成。在硬件正确连接后,可开始打开 DEMO 进行初步测试。步骤二:

1、双击启动 DEMO, 进入图 3-2 主界面。如果提示"未搜索到任何设备", 请检查:

1)控制卡的驱动是否正确安装;

2) 控制卡的 PCIe 接口与 PC 中的 PCIe 插槽是否正确插入;

2、点击"搜索设备"->"打开设备",此时控制卡已可正常使用,如图 3-4 所示:

图 3-4 控制卡 DEMO 设备打开正常弹框

步骤三:输入测试:将"刷新"方框选中,若有输入,则对应的通道下"输入状态"的方框中会显示"√",此时表示输入有效;若选择"状态取反"功能框的"取反",则界面的显示效果相反;

Configure						Cha	ngeD	io								
Device_0 ~	Search	Ope	1	Close		ch1	-8	✓ EN	IC_PU	LSE	Updat	:e	TEST_C	IO TES	ST_LED	D
Digital Input													TEST_R	AM 🔽 Refr	resh	
Input_Mode	Level	~ Level	~	Level	~	Level	~	Level	~	Level	~	Level	~	Level	~	
Inverse_Input	Normal	~ Norm	al ~	Normal	~	Normal	~	Normal	~	Normal	~	Normal	~	Normal	~	
debounce_delay	0	0		0		0		0		0		0		0		(
edge_count																
Input_Status	☑ 1CH	20		ЗСН		4CH		SCH		6CH		□7CH		BCH		
IntEnable	1INT		т	3INT		4INT		□ 5INT		☐ 6INT						
Inverse_Output	Normal	/ Norma	~	Normal	~	Normal	~	Normal	~	Normal	~	Normal	~	Normal	~	
inverse_Output	Normal	Norma	~	Normai		Normai	~	Normai	~	Normai	~	Normal	~	Normal	~	
Pulse_Width	0	0		0		0										0
Pulse_Cycle	0	0		0		0										(
Pulse_Number	0	0		0		0										
Input_Source	1 .	1	\sim	1		1		1		1		1		1		
Light Control Enable	П 10н		2CH			ЗСН		40	4		5	сн		6CH		
Trigger Mode	SoftControl	~	SoftCo	ntrol 🗸	S	oftControl		SoftC	ontrol	~	Soft	Control 🕔	7	SoftCon	trol ~	7
	0		0		1			1			1			1		j
Freq/Time										_						
Freq/Time Lum(%)		64%	-	64%	-		0%			0%			0%			0

图 3-5 输入界面

步骤四:输出测试:在对话框中选择相应的输出通道,选择输出模式,设置是否取反;若选择输出模式为"直接脉冲"或者"输入触发"时,此时可选择输入输出延时的时间和输出的脉冲宽度。如图 3-6 所示为输出电平;

8 ExioDemo-RXE-1	100-EIO-101								×
Configure				Change	Dio				
Device_0 ~	Search	Open	Close	ch1-8	ENC_PU	ILSE Updat	te TEST_D	IO TEST_LE	D
Digital Input							TEST_R	AM	
Input_Mode	Level	- Level	Level	~ Level	√ Level √	Level ~	Level ~	Level ~	
Inverse_Input	Normal	V Normal	 Normal 	~ Normal	√ Normal √	Normal ~	Normal ~	Normal ~	
debounce_delay	0	0	0	0	0	0	0	0	(us)
edge_count									
Input_Status	1CH	2CH	🗌 ЗСН	4CH	5CH	6СН	□ 7CH		
IntEnable	1INT	2INT	3INT	4INT	□ 5INT	6INT	7INT	□ 8INT	
Digital Output									
Output	☑ 1CH	2CH	🗌 ЗСН	4CH	5СН	6СН	7СН	CH 8CH	
Output_Mode	Level ~	Level ~	Level	- Level	Level ~	Level ~	Level ~	Level ~	
Inverse_Output	Normal ~	Normal ~	Normal	Vormal V	v Normal v	Normal ~	Normal ~	Normal ~	
Output_Delay	0	0	0	0					(us)
Pulse_Width	0	0	0	0					(us)
Pulse_Cycle	0	0	0	0					(us)
Pulse_Number	0	0	0	0					
Input_Source	1 ~	1 ~		v 1 .	· 1 · ·	1 ~	1 ~	1 ~	
Light Control Enable	1CH	20	ł	ЗСН	4СН	5	СН	🗌 6СН	
Trigger_Mode	SoftControl	✓ SoftC	ontrol 🗸	SoftControl ~	SoftControl	l ∨ Soft	Control 🗸	SoftControl	-
Freq/Time	0	0		1	1	1		1	
Lum(%)	-	64%	64%	0	%	0%	0%		0%
Trigger_Source	Di_3	∨ Di_4	~	Di_1 ~	Di_1	✓ Di_1	×	Di_1	

图 3-6 输出界面

3.6 编程说明

3.6.1 打开关闭功能

1、在调用 IO 卡的功能函数之前,应该先使用 LH_OpenDevice 打 开 设 备,使 用 完 之 后或者进程退出之前调用 LH_CloseDevice 关 闭 对 应 设 备。使 用 LH_IsDeviceOpenned 可以查询当前卡是否处于打开状态。

2、 指令列表

指令	说明
LH_DeviceCount	获取 I0 卡的数量
LH_OpenDevice	打开第几张 IO 卡设备
LH_CloseDevice	关闭第几张 IO 卡设备
LH_IsDeviceOpenned	判断第几张 IO 卡设备是否打开
表 3	-1 I0 卡初始化指令列表

LH_DeviceCount()				
返回值	I0 卡设备个数			
LH_OpenDevice(unsigned	int deviceId)			
deviceId	第几张 IO 卡,从 0 开始			
LH_CloseDevice(unsigned	l int deviceId)			
deviceId	第几张 IO 卡,从 0 开始			
LH_IsDeviceOpenned(unsigned int deviceId)				
deviceId	第几张 IO 卡,从 0 开始			

表 3-2 IO 卡初始化指令参数说明

```
3、 例程
```

```
使用例程如下:
int index = 0; //设备编号
int devCount = LH_DeviceCount();
if (devCount == 0)
{
    MessageBox(L"未搜索到任何设备!");
    return;
}
```


int rtn = LH_OpenDevice((unsigned int)index);
//开始其它操作
//……
//结束其它操作
int rtn = LH_CloseDevice((unsigned int)index);

3.6.2 D0 功能

1、 IO 卡 支 持 4 个 通 道 数 字 输 出 , 编号从 1—4, 每个通道既可以用作 电平输出也可 以用作脉冲输出 。

电平输出模式下,调用 LH_SetDo 或者 LH_SetDoBit 改 变 输 出 电 平 的 状 态,通 过 LH_GetDo 或者 LH_GetDoBit 获 取 端 口 输 出 电 平 的 状 态。LH_SetDoInv 用 于 输 出 电 平 取反,默认情况下输出不取反。

脉冲输出模式下,可以用过调用函数接口直接输出脉冲,也可以通过 DI 端口触 发输出,还可以配置成位置比较的输出)。LH_PulseOutput用于直接输出脉冲,IO 卡根据指定的延时时间和脉冲宽度立即输出脉冲;LH_DiTrigOutput用于设置输入触发输出的功能,即输入端口检测到指定边沿信号则输出一个脉冲。

一个输出通道在一个时刻只能是一种功能,调用不同函数接口时会从当前模式切 换到 指定模式,通过调用 LH_GetDoMode 可获取 D0 通 道 的 当 前 模 式 。一 般 情 况 下 ,只能在当前模式停止工作后才能切换到另一种模式,以免引起逻辑上的错误,比如 D0 通道用于位置比较输出,则应该先停止位置比较,再调用需要使用的函数 。

指令	说明
LH_SetDo	设置指定 IO 卡数字 I/O 输出的电平状态
LH_SetDoBit	设置指定 IO 卡的指定端口的输出电平状态
LH_GetDo	读取指定 IO 卡数字 I/O 输出的电平状态
LH_GetDoBit	读取指定 IO 卡的指定端口的数字 I/O 输出的 电平状态
LH_SetDoInv	设置指定 IO 卡数字 I/O 输出的电平取反
LH_GetDoInv	设置指定 IO 卡的指定端口的数字 I/O 输出的 电平取反
LH_GetDoMode	获取指定 IO 卡的指定端口的输出模式
LH_PulseOutput	设置指定 I0 卡的指定端口输出脉冲信号
LH_DiTrigOutput	设置 DI 触发 DO 输出脉冲信号
	主 2 2 20 4 关北 6 到 主

2、 指令列表

表 3-3 D0 相关指令列表

LH_SetDo (unsigned	int deviceId, unsigned short val)
deviceId	第几张 IO 卡,从 0 开始
val	输 出 状 态 , 每 一 位 代 表 一 个 输 出 端口 , 值 为 0 0xff

	对应位为 1 表示输出高电平, 0 表示低电平
LH_SetDoBit(unsig	ned int deviceId, unsigned int port, unsigned short val)
deviceId	第几张 IO 卡,从 O 开始
port	端口号,范围 1-4
val	输 出 状 态 , 值 为 0— 1, 为 1 表示输出高电平 , 0 表示 低电平
LH_GetDo(unsigned	int deviceId, unsigned short &val)
deviceId	第几张 IO 卡,从 O 开始
val	输出状态,每一位代表一个输出端口的状态,对应位为1表示输出高电平,0表示低电平
LH_GetDoBit(unsig	ned int deviceId, unsigned int port, unsigned short
&val)	
deviceId	第几张 IO 卡,从 O 开始
port	端口号,范围 1-4
val	输出状态,值为0或1
LH_SetDoInv(unsig	ned int deviceId, unsigned int port, int inverse)
deviceId	第几张 IO 卡,从 0 开始
port	端口号,范围 1-4
inverse	0 - 不取反; 1 - 取反
LH_GetDoInv(unsig	ned int deviceId, unsigned int port, int &inverse)
deviceId	第几张 IO 卡,从 0 开始
port	端口号,范围 1-4
inverse	0 - 不取反; 1 - 取反
LH_GetDoMode(unsi	gned int deviceId, unsigned int port, int &mode)
deviceId	第几张 IO 卡,从 O 开始
port	端口号,范围 1-4
	当前输出模式:
	DO_MODE_LEVEL 表示输出电平;
	DO_MODE_PULSE_DIRECT 表示软件触发脉冲输出;
	DO_MODE_PULSE_DI 表示 DI 触发脉冲输出;
mode	DO MODE PULSE COMPARE LINEAR 表示等间
	距比较触发脉冲输出;
	DO MODE PULSE COMPARE DATA 表示离散数
	据比较触发脉冲输出。
LH PulseOutput(un	signed int deviceId, unsigned int port, unsigned int
delay, unsigned i	nt pulseWidth)
deviceId	第几张 IO 卡,从 0 开始
port	端口号,范围 1-4

delay	输出延时,单位(us)
pulseWidth	脉冲宽度,单位(us)
LH_DiTrigOutput(un	signed int deviceId, int outPort, int delay, int
pulseWidth, int tr	igPort, int trigEdge)
deviceId	第几张 IO 卡,从 O 开始
outPort	端口号,范围 1— 4
delay	输出延时,单位(us)
pulseWidth	脉冲宽度,单位(us)
trigPort	触发输入端口, 1-4
trigEdge	触发沿, 0一 上升沿; 1一 下降沿
	表 3-4 I0 卡初始化指令参数说明

3、 例程

//LH_SetDoBit 使用例程如下:

```
int rtn = 0;
int deviceIndex = 0; int
doIndex = 1;
rtn = LH_SetDoBit(deviceIndex, doIndex, 0);
rtn = LH_SetDoBit (deviceIndex, doIndex, 1);
//LH_SetDoInv 使用例程如下:
int inverse = 1;
```

rtn = LH_SetDoInv(deviceIndex, doIndex, inverse); switch (rtn)

{

case FUNC_RETURN_ERROR_PARAMETER:

MessageBox(L"传入参数错误!"); break;

```
case FUNC_RETURN_FILE_OPERATE_FAIL:
```

MessageBox(L"文件操作失败!"); break;

case FUNC_RETURN_DEVICE_NOT_OPEN:

MessageBox(L"设备未打开!"); break;

case FUNC_RETURN_FAIL:

MessageBox(L"指令执行失败!"); break;

default:break;

}

3.6.3 DI 功能

1、 I0 卡支持4个通道数字输入,编号从1—4,每个通道既可以用作电平输入也可以用作输入信号边沿计数。为了减少输入信号噪声的干扰,可以调用LH_SetDiFilter 对输入信号进行滤波。

LH_SetDiMode 用于切换输入通道的模式。当作为电平采样的时候,调用 LH_GetDi或者 LH_GetDiBit 来获取当前端口的电平状态,用 LH_SetDiInv 可 对输入状态进行取反。当作为边沿计数用的时候,调用 LH_GetDiCount 获取计数值,调用 LH_ResetDiCount 可对计数值清零。

2、指令列表

指令	说明			
LH_GetDi	获取指定 I0 卡的数字输入状态			
LH_GetDiBit	获取指定 IO 卡的相应端口数字输入状态			
LH_SetDiMode	设置指定 IO 卡的相应端口的 DI 的模式类型			
LH_GetDiMode	获取指定 IO 卡的相应端口的 DI 的模式类型			
LH_SetDiInv	设置指定 IO 卡的相应端口端口数字输入取反			
LH_GetDiInv	获取指定 I0 卡的相应端口的数字取反输入			
LH_SetDiFilter	设置指定 IO 卡的相应端口的滤波时间			
LH_GetDiFilter	获取指定 IO 卡的相应端口的滤波时间			
LH_GetDiCount	获取指定 IO 卡的相应端口的边沿个数			
LH_ResetDiCount	复位指定 IO 卡的相应端口的边缘个数			
表 3-5 位置比较指令列表				

LH_GetDi(unsigned	int deviceId, unsigned short &val)				
deviceId	第几张 IO 卡,从 O 开始				
val	输入状态,每一位代表一个输入端口,值为 0—0xff ,对应位为1 表示输入高电平,0 表示低电平				
LH_GetDiBit(unsign	LH_GetDiBit(unsigned int deviceId, unsigned int port, unsigned short				
deviceId	第几张 IO 卡,从 O 开始				
port	端口号,范围 1 — 4				
Val	状态值,为1表示输入高电平,0表示低电平				
LH_SetDiMode(unsigned int deviceId, unsigned int port, int mode)					
deviceId	第几张 IO 卡,从 O 开始				

port	端口号,范围 1 — 4
mode	输入采样模式: DI_MODE_LEVEL 表示电平输入; DI_MODE_PULSE_RISING 表示上升沿计数; DI_MODE_PULSE_FALLING 表示下降沿计数。
LH_GetDiMode(unsi	gned int deviceId, unsigned int port, int &mode)
deviceId	第几张 IO 卡, 从 O 开始
port	端口号,范围 1 — 4
mode	同 LH_SetDiMode。
LH_SetDiInv(unsig	ned int deviceId, unsigned int port, int inverse)
deviceId	第几张 IO 卡,从 0 开始
port	端口号,范围 1 — 4
inverse	0-正常; 1-取反
LH_GetDiInv(unsig	ned int deviceId, unsigned int port, int &inverse)
deviceId	第几张 10 下,从 0 开 始
port	端口号,范围 1 — 4
inverse	0-正常; 1-取反
LH_SetDiFilter(un	usigned int deviceId, unsigned int port, unsigned int
deviceId	第几张 IO 卡,从 0 开始
port	端口号,范围 1 — 4
filter	滤波时间, 单位(us)
LH_GetDiFilter(un	signed int deviceId, unsigned int port, unsigned int
deviceId	第几张 IO 卡,从 0 开始
port	端口号,范围 1 — 4
filter	滤 波 时 间 , 单 位 (us)
LH_GetDiCount(uns	signed int deviceId, unsigned int port, int &count)
deviceId	第几张 IO 卡,从 O 开始

port	端口号,范围 1 — 4	
count	边沿计数值	
LH_ResetDiCount(unsigned int deviceId, unsigned int port)		
deviceId	第几张 IO 卡, 从 O 开始	
port	端口号,范围 1 — 4	
表 3-5 DI 功能指令参数说明		

3、例程

```
//LH_PulseOutput 使用例程如下:
```

```
unsigned int delay = 0, width = 1000;
rtn = LH_PulseOutput(deviceIndex, doIndex, delay, width);
//LH_DiTrigOutput 使用例程如下:
int diChn = 1; int
```

diEdge = 0;

rtn = LH_DiTrigOutput(deviceIndex,

```
doIndex, delay, width, diChn, diEdge); switch (rtn)
```

```
{
```

case FUNC_RETURN_ERROR_PARAMETER:

MessageBox(L"传入参数错误!");

break;

```
case FUNC_RETURN_FILE_OP ERATE_FAIL:
```

MessageBox(L"文件操作失败!");

break;

```
case FUNC_RETURN_DEVICE_NOT_OPEN:
```

```
MessageBox(L"设备未打开!"); break;
```

```
case FUNC_RETURN_FAIL:
```



```
MessageBox(L"指令执行失败!");
```

break;

```
default: break;
```

}

第四章 BIOS 设置说明

4.1 BIOS 说明

BIOS 是一段储存在快闪内存(Flash Memory)中的基本输入输出控制程序,该程序是主 机板与操作系统间的一架桥梁,负责管理主机板和扩充卡之间的相关参数设定。当计算机激 活时,会先由 BIOS 程序进行控制,首先执行一个称为 POST 自我测试,它会侦测所有硬件设 备,并确认同步硬件参数;当完成所有检测时,它才将系统的控制权移交给操作系统(OS)。 由于 BIOS 是硬件与软件联系的唯一信道,如何妥善的设定 BIOS 中的参数,将决定您的电脑 是否稳定运行,是否工作在最佳状态,所以 BIOS 的正确设定是系统稳定性的关键因素,进而 确保系统性能可达到最佳状态。

CMOS Setup 会将设置好的各项数据储存在主板上内建的 CMOS SRAM 中。当电源关闭时, 由主板上的锂电池继续为 CMOS SRAM 供电。BIOS 设置实用程序允许您配置:

- 1) 硬盘驱动器和周边设备
- 2) 视频显示类型和显示选项
- 3) 密码保护
- 4) 电源管理特征

▲ 由于主板的 BIOS 版本在不断的升级,本手册中有关 BIOS 的描述仅 供参考。我们不保证本说明书中的相关内容与您所获得的信息的一 致性。

4.1.1 进入 CMOS Setup 设置

计算机启动时,BIOS 进入开机自检(Post)程序,自检程序是一系列固定在BIOS 中的 诊断程序,当自检程序执行完成后,没有遇到错误,如果你想进入BIOS,请按DEL 键或ESC 键,直到进入BIOS 界面。如果此信息在您做出反应前就消失了,您可以关机后再开机, 重启您的电脑,也可以同时按下 <Ctrl> + <Alt>+<Delete> 来重启电脑。

4.1.2 功能键及辅助说明

↑ (向上键)	用于移到上一个项目
↓ (向下键)	用于移到下一个项目
← (向左键)	用于移到左边的项目
→ (向右键)	用于移到右边的项目
ESC 键	用于退出当前画面
Enter 键	用于选择确认
+ 键	用于改变设定状态,或增加数值内容
— 键	用于改变设定状态,或减少数值内容
F1 键	用于显示帮助
F2 键	用于载装上一次设定的值
F3 键	用于载装最优化的值
F4 键	用于储存设定值并离开CMOS SETUP程序

FULLYEROBOL

来

未

机器人

主画面的辅助说明

当您在 Setup 主画面时,随着选项的移动,下面显示相应选项的主要设定内容。如果想离开辅助说明窗口,只须按[ESC]键即可。

4.2 主菜单功能

当您进入 CMOS setup 设定菜单时,便可在屏幕上方看到如图 4.1 所示主菜单,在主菜 单中您可以选择不同的设定选项,按左右方向键来选择,选择到子菜单后,下方将显示详 细设置选项。

Aptio Setup Utility – Copyright (C) 2019 American Megatrends, Inc. Main Advanced Chipset Security Boot Save & Exit				
BIOS Information BIOS Vendor Core Version Compliancy Project Version Build Date and Time Access Level	American Megatrends 5.12 UEFI 2.5; PI 1.4 RXE_1100_2GB 0.4703 x64 02/26/2019 11:44:14 Administrator	Choose the system default language		
Platform firmware Information BXT SOC MRC Version PUNIT FW PMC FW TXE FW ISH FW GOP CPU Flavor Board ID Fab ID	B1 0.56 32 03.29 3.1.55.2269 N/A 10.0.1030 BXT Notebook/Desktop APL RVP 1A (01) FAB1	++: Select Screen 11: Select Item Enter: Select +/-: Change Opt. F1: General Help F2: Previous Values F3: Optimized Defaults F4: Save & Exit		
Memory Information Total Memory Memory Speed	2048 MB 1600 MHz	v sut		
Version 2.18.1263. Copyright (C) 2019 American Megatrends, Inc.				

图 4-1: 主菜单

- 1) Main(标准 CMOS 功能设定) 设定日期、时间等。
- Advanced (高级 BIOS 功能设定)
 设定 BIOS 提供的特殊功能,例如 CPU、USB、PCI、网口等。
- Chipset(芯片组性能设置)
 设定 North Bridge、South Bridge等设备选项
- 4) Security (设定管理员/用户密码)
- 5) Boot (启动配置特性)
- Save&Exit(保存&退出选项)
 该选项含放弃更改/不保存退出/保存退出等。

4.3 Main(标准 CMOS 功能设定)

Aptio Setup Utility Main Advanced Chipset Security	– Copyright (C) 2019 America Boot Save & Exit	n Megatrends, Inc.
Project Version Build Date and Time Access Level	RXE_1100_2GB 0.4703 x64 02/26/2019 11:44:14 Administrator	Set the Time. Use Tab to switch between Time elements.
Platform firmware Information		
BXT SOC	B1	
MRC Version	0.56	
PUNIT FW	32	
PMC FW	03.29	
TXE FW	3.1.55.2269	
ISH FW	N/A	
GOP	10.0.1030	
CPU Flavor	BXT Notebook/Desktop	
Board ID	APL RVP 1A (01)	++: Select Screen
Fab ID	FAB1	↑↓: Select Item
		Enter: Select
		+/-: Change Opt.
Memory Information		F1: General Help
Total Memory	2048 MB	F2: Previous Values
Memory Speed	1600 MHz	F3: Optimized Defaults
	Terror John	F4: Save & Exit
System Language	[English]	ESU: EXIT
Suctom Doto	[Tue_02/26/2019]	
Sustem Time	[15:53:08]	
	[10:00:00]	
Version 2.18.1263.	Copyright (C) 2019 American H	Megatrends, Inc.

图4-2: Main菜单

- System Time(hh:mm:ss)(时间设定)
 设定电脑中的时间,格式为"小时/分钟/秒"
- System Date(mm:dd:yy)(日期设定)
 设定电脑中的日期,格式为"星期,月/日/年"

4.4 Advanced(高级 BIOS 功能设定)

Aptio Setup Utility – Copyright (C) 2019 Am Main <mark>Advanced</mark> Chipset Security Boot Save & Exit	merican Megatrends, Inc.
 Trusted Computing ACPI Settings SMART Settings Senial Port Console Redirection CPU Configuration ANI Graphic Output Protocol Policy SID Configuration POI Subsystem Settings Network Stack Configuration CSM Configuration NVMe Configuration VSB Configuration USB Configuration 	Trusted Computing Settings
 Platform Trust Technology Security Configuration Thermal System Component Debug Configuration RC ACPI Settings RTD3 settings 	<pre>++: Select Screen f4: Select Item Enter: Select +/-: Change Opt. F1: General Help F2: Previous Values F3: Optimized Defaults F4: Save & Exit ESC: Exit</pre>
Version 2.18.1263. Copyright (C) 2019 Amer	rican Megatrends, Inc.

图4-3: Advanced菜单

- 1) Trusted Computing:可信计算设置
- 2) ACPI Settings: ACPI 设置
- 3) SMART Setting: 智能设置
- 4) Serial Port Console Redirection: 串口重定向控制
- 5) CPU Configuration: CPU 配置
- 6) AMI Graphic Output Protocol Policy: AMI 图形输出协议方针
- 7) SIO Configuration: 串行输入/输出配置
- 8) PCI Subsystem settings: PCI 子系统设置
- 9) Network Stack Configuration: 网络堆栈配置
- 10) CSM Configuration: CSM 配置
- 11) NVMe Configuration : NVMe 配置
- 12) USB Configuration: USB 配置
- 13) Platform Trust Technology: 技术平台的信任
- 14) Security Configuration: 安全配置
- 15) Thermal: 温度配置

- 16) System Component : 系统组件
- 17) Debug Configuration : 调试配置
- 18) RC ACPI Settings: RC ACPI Settings 设置
- 19) RTD3 Setting : RTD3 设置

4.5 Chipset(芯片组性能设置)

FULLYEROBOL

机

器

人

来

未

图4.4: Chipset菜单

- 1) North Bridge: 北桥芯片设置选项
- 2) South Bridge: 南桥芯片设置选项
- 3) Uncore Configuration: Uncore 配置
- 4) South Cluster Configuration: 南集群配置

4.6 Security (设定管理员/用户密码)

图4.5: Security菜单

- Setup Administrator Password:设置超级用户密码选项,此密码拥有最高权限。 当您选择此功能,以下信息将出现:Crate New Password *****
 输入密码,最多二十个字符,然后按<Enter>键。BIOS 要求再次输入同样密码,输入完成后,BIOS 保存所设定的密码。一旦使用密码功能,您会在每次进入BIOS 设定程序前, 被要求输入密码。这样可以避免任何未经授权的人使用您的计算机。
- 2) User Password:设置用户密码选项,此密码权限会受限制,部分设置不能更改。 当您选择此功能,以下信息将出现:Crate New Password ****** 输入密码,最多二十个字符,然后按<Enter>键。BIOS要求再次输入同样密码,输入完成后,BIOS保存所设定的密码。一旦使用密码功能,您会在每次进入BIOS设定程序前, 被要求输入密码。
- Secure Boot: 安全启动 设定值有: [Disabled]/ [Enabled]。

4.7 Boot (引导设置)

图4.6: Boot菜单

1) Boot Configuration

Setup Prompt Timeout:设置提示时间 开机显示 POST 停留时间,数值越大,停留时间越长。 Bootup NumLock State:系统启动后 Num Lock 键状态 设定值有:[On]/[Off]。这个选项规定在计算机启动后键盘上的 Num Lock 键的状态。 Quiet Boot:静启动 设定值有:[Disabled]/[Enabled]。这个选项规定在计算机启动时是否显示 LOGO。

- Boot Option Priorities:优先启动选项
 Boot Option #1:第一启动选项
 Boot Option #2:第二启动选项
 Boot Option #3:第三启动选项
 Fast Boot : 静启动
 设定值有: [Disabled]/ [Enabled]。
 New Boot Option Policy
 - 设定值有: [Default]/ [Place First] / [Place Last]

4.8 Save&Exit (保存&退出选项)

图4.7: Save&Exit菜单

1) 保存选项(Save Options)

Save Changes and exit: 保存更改退出

Discard Changes and Exit: 放弃更改退出

Save Changes and Reset:保存更改并重启

Discard Changes and Reset: 放弃更改并重启

Save Changes: 保存更改

Discard Changes: 放弃更改。

2) 默认值选项(Defaults Options)

Restore Defaults: 载入默认优化值(Load Optimal Defaults)

在主菜单的这个选项能够允许用户把所有的 BIOS 选项恢复到优化值。优化缺省值是为 了优化主板性能而设置的默认值,若选择 YES 并按下 Enter,即可储存所有设定结果到 CMOS SRAM 并离开 BIOS 设定程序;若不想储存,则选择 NO 皆可回到主菜单中。 Save as User Defaults:保存为用户默认值 Restore as User Defaults:还原为用户默认值

3) Boot Override: 直接引导启动